

OOP: I Did It Again
Lessons Learned from Parsing ANSI X12 271
and Tips on Object-Oriented Programming

by Sam Livingston-Gray

• I started working with Access exactly six years
ago. After ~3 weeks, I realized I needed to learn
VBA to do the things I really wanted to do...

• and thus a developer was born.

• This presentation grew out of my last full-time
job, working with Jerry Porter (another PAUG
member).

• I’m now pursuing a BSCS, starting at PCC.

About The Speaker

• In 2001, I was asked to write some code to parse
and import text data in ANSI X12 271 format.
(Avoid this format like the plague!)

• I’ll walk you through the various stages of this
project, relating the problem to object-oriented
design at key points as we go.

• There will be no demo -- the running code is too
complicated for a 1-hour talk, and doesn’t have a
UI.

• We’ll pause for questions between sections.

About This Talk

• We’ll start with hierarchical data and OOP.
• I’ll talk about one of the better hierarchical

formats (XML) and contrast it with one of the
worst (X12).

• We’ll look at my first attempt to parse X12 data,
which included one fairly simple object.

• We’ll look at version two, which used a few more
objects, and compare the versions.

• If there’s time, maybe we can get to some
abstract generalizations and hand-waving...

Agenda

• Hierarchical databases apply meaning to data not
just by what’s in the fields, but also by where that
data is stored.

• Probably the best-known example: the filesystem.
C:\My Documents\PAUG\Presentations\X12.ppt

• This talk deals with several different hierarchical
structures (XML, X12, and some nested objects).
These all have the same logical structure as
your filesystem.

Fundamentals:
Hierarchical Data

• Let’s take suburbia as an example. A class module
is like the blueprint for all houses in a subdivision
(e.g., the House class).

• An object is like one house on a street.
• It’s built using the class module as a plan:

Dim myHouse as House
Set myHouse = New House

• Each object can have its own properties:
myHouse.PaintColor = vbGreen
myHouse.RoofType = vbComposite

Fundamentals:
Classes and Objects

• That’s it for the intro of hierarchical data and
OOP.

• Next up: XML (eXtensible Markup Language)

• (Show of hands: who’s worked with XML?
HTML? If not, come early next time!)

Questions?

• Basic unit of an XML file: the tag. This
corresponds to a folder in the filesystem example.

• Special syntax defines the beginning and ending
of a tag (confusingly, these are also called the start
tag and end tag). Start and end tags are
surrounded by angle brackets (<>), and end tags
start with a slash (/). ex: <tag>some data</tag>

• Anything between the start and end tags is part
of that tag.

XML:
A Hierarchical Text Format

• Tags can be nested (nested tags are also called
child tags).

<foo>some data
 <bar>more data</bar> ← child tag
</foo>

• Tags can have attributes as well as child data.
<foo id=“root”>data</foo>
 ↑attribute

• Tags with no data are indicated as: <tag />
• Two simple examples follow...

XML Syntax
Some other rules

<library>
<author>

<name>Sam Livingston-Gray</name>
<books>

<book>
<title>Great American Novel</title>

</book>
<book>

<title>Horrible American Novel</title>
</book>

<books>
</author>

</library>

XML Example

<library>
 <author name=“Sam Livingston-Gray”>
 <books>
 <book title=“Great American Novel” />
 <book title= “Horrible American Novel” />
 </books>
 </author>
</library>

XML example using
attributes

• When parsing XML, a tag’s level is always known.

• If one start tag is encountered after another start
tag, the second tag is always a descendant of the
first...

• ...because the first one’s end tag hasn’t been
encountered yet. Anything after that end tag is
not a descendant of the original tag.

• The file can thus be read properly without any
external information about its structure.

XML: Easy To Parse

• There are two main schools of XML parsing.
• SAX (Simple API for XML): parser makes one

forward-only pass through the document,
firing events as it reaches new tags. Pros: fast
and small. Cons: code must remember every
element or it’s lost forever.

• DOM (Document Object Model): The entire
document is read into memory and can then
be accessed through a hierarchy of objects.
Pros: allows arbitrary access to data. Cons:
big and slow.

Parsing XML: SAX & DOM

• That’s it for the XML intro.

• Next up: ANSI X12

Questions?

• Now, imagine a file format without end tags.

<author>Sam Livingston-Gray
<books>

<book>
<title>Great American Novel

<book>
<title>Horrible American Novel

• I’ve indented the above so you can see the
relationships. Let’s see it as an X12-style file...

Comfortable? Let’s Fix That

AUTHOR*42*Sam Livingston-Gray@
BOOKS*42@
BOOK*42*1@
TITLE*Great American Novel@
BOOK*42*2@
TITLE*Horrible American Novel@

• Note the delimiters:
• @ marks a segment (⇔ start tag).
• * marks an element (⇔ attribute).
• I call the zeroth element the “base element.”

X12-Style Data

• Here’s the problem: When you read a new
segment, how do you know where it is in the
hierarchy?

• Answer: Look it up in the (400-page!) spec.
• As opposed to XML, which can be interpreted on

its own, interpreting X12 requires extra
information.

• What this means is that you have to encode
information about how to handle different
segments into your parsing logic (a la SAX).

So What?

• That’s it for the X12 intro.

• Next up: Version 1

Questions?

• (from previous slide) “What this means is that
you have to encode information about how to
handle different segments into your parsing logic
(a la SAX).”

• In fact, that’s what the first version did: the
structure of the code reflected the structure of
the document. Every segment corresponded to a
Do..Loop structure with a Select Case statement
inside it.

• This went 14 layers deep (ick)!

Spec This (1)

Do
theParser.ReadNextSegment // we’$ get to this...
Select Case theParser.Element(0)

Case “AUTHOR”
[Process AUTHOR segment]

Case “BOOKS”
Do // Note nested structure!

theParser.ReadNextSegment
Select Case theParser.Element(0)
[...] // Repeat 14 layers deep

Loop
Loop

Version 1: Never Do This!

• On the upside:
• This was relatively quick to write -- I had a

working version in about 3 days.
• It also ran fairly fast: 4,000 records/minute,

where a record consisted of 8-50 segments.
• However:

• This was a nightmare to write, let alone
maintain. The structure is highly redundant,
which means lots of copying/pasting code.

• Any change to the spec meant writing and
delivering new code.

Version 1 Pros/Cons

• As part of this, I wrote a forward-only parser
object that reads one segment at a time. (This
was intentionally modeled after SAX.)

• Key methods/properties:
• OpenInputFile: Tells parser where to find data.
• ReadNextSegment: Reads to the next @

delimiter and splits that string on the *
delimiter for inclusion in the Element array.

• Element(index): Exposes individual elements.

OOP Interlude: X12 Parser

Do
theParser.ReadNextSegment

Select Case theParser.Element(0)
Case “AUTHOR”
[Process AUTHOR segment]

Case “BOOKS”
Do // Note nested structure!
 theParser.ReadNextSegment

Select Case theParser.Element(0)
[...] // Repeat 14 layers deep

Loop
Loop

Parser In Action

• That’s it for Version 1.

• Next up: Version 2

Questions?

• Key realization: Because X12 and XML are both
hierarchical, you can use XML (the good one) to
represent the structure of X12 (the bad one)!

• By keeping a “map” of the structure as an XML
document -- and keeping track of where you are
in the map -- you can figure out how to interpret
new X12 segments.

• Advantage: By changing the map, you can change
how the program behaves without rewriting code.

Take Two: The Map

<x12map>
<segment BaseElement=“AUTHOR”>

<segment BaseElement=“NAME”>
<field element=“1” target=“AUTHORNAME” />

</segment>
<segment BaseElement=“BOOKS”>

<segment BaseElement=“BOOK”>
<segment BaseElement=“TITLE” />

</segment>
</segment>

</segment>
</x12map>
...and so on.

XML Map Example

• Load the map from the table into a string

• Use the XML DOM parser to turn the map
string into a hierarchical set of objects

• Tell the X12 parser to read through its data. At
each new segment, find the object in the XML
DOM hierarchy that represents our place in the
map. This will tell us how to interpret the tag.

Version 2A

Do Until theParser.EOF
theParser.ReadNextSegment
Starting from the map’s current context, find the
tag in XML map where BaseElement tag
matches theParser.Element(0)
(more on this on the next two slides)
Query the map to find out what to do with this
segment (which fields to read, etc.)

Loop

Pseudocode

• It turns out that in X12, when you reach a new
segment, it can have one of several relationships
to the previous segment. It can be:
• The same segment, repeated
• A sibling
• A child
• A parent or ancestor
• The sibling of an ancestor

• (This is why I prefer XML: you always know how
to treat a new tag.)

O Brother, Where Art Thou?

• After much discussion and debate, we settled on
a simple algorithm that will always find the next
segment in the map (if the map is complete):
• Examine current map location: are we already

at the next segment? If so, we’re done.
• Examine all children: is one of them the next

segment? If so, we’re done.
• If neither of the above is true, move to self ’s

parent and repeat.
• If we’re at root and no match, map is wrong!

Using The Map:
You Are Here

• So now we have a way to build a map (using an
XML document) that represents the structure of
the X12 data.

• ...which means we can throw away the code that
did the same job of representing structure...

• ...leaving only code for navigating the map...
• ...which means that when the X12 data changes,

we just publish a new map -- which won’t need
nearly as much debugging!

So What?

• Pros: much more flexible. Changes to the layout
no longer require us to edit a single line of VBA.

• Cons:
• DOM code is very verbose:

• 5-10 lines to change context (which may be
done 5-6 times before we find the right one)

• 5-10 lines to see if the current context
matches the next segment.

• Total speed is 4x slower than version 1!

Version 2A Pros/Cons

• That’s it for version 2A.

• Coming up: version 2B

Questions?

• I’d been using XML DOM because I happened to
know it, and because I wanted to do my map
editing in XMLSpy (a good, though expensive,
XML editor).

• But the performance penalty turned out to be too
high, because DOM is a general-purpose tool
with lots of powerful features.

• ...so could I write a custom tool that did the same
job with less overhead?

• ...like, say, my own hierarchy of objects?

Revelation 2

• Key properties:
• BaseElement: Tells us what we expect in the

zeroth element. (We check this to see if we’re
in the right map context while searching.)

• ChildSegments: Collection of other Segment
objects “below” this one in the hierarchy.

• ParentSegment: Refers to the Segment that
has this one in its ChildSegments collection.

The Segment Object

• Load the map from the table into a string
• Use the XML DOM parser to turn the map

string into a hierarchical set of objects
• Turn the XML DOM objects into a set of

Segment objects
• Tell the X12 parser to read through its data. At

each new segment, find the object in th#
Segment hierarchy that represents our place in
the map. This will tell us how to interpret the
tag.

Version 2B
(Changes from 2A highlighted)

• Has all the advantages of version 2A in terms of
flexibility and speed of development,

• Map navigation code uses 5 times fewer lines,

• And it’s twice as fast as 2A right off the bat. After
optimization, it was ~2.2 times faster than the
same code that used the XML DOM.

• ...This is still 1.8 times slower than the original
Select Case set, but the advantages for us made
this an acceptable tradeoff.

Version 2B Pros/Cons

• That’s (almost) it for version 2.

• Coming up (if there’s time): memory leaks,
metaprogramming, reference counting, and other
gibberish

Questions?

• We discussed using a ‘metaprogramming’ hack
that would allow us the development speed of the
map code, coupled with the execution speed of
the Select Case structure.

• How? Simple! Use the map code to write the
Select Case code!

• ...we didn’t bother (yet).

Next...?

• Version 2B, however, had a “gotcha” in it: a
memory leak. Every time you ran the code, the
map hung around in memory until Access closed.
(If we’d been using VB6, the memory would’ve
been consumed until system shutdown!)

• This was because my Segment structure
contained circular references.

• I’ll cover reference counting if there’s time. (If
not, just remember: memory leaks are easy to
create if you don’t know what you’re doing.)

Remember Sammy Jankis

The End
• Thanks!

• Direct questions to slg@timestream.net

• Looking for a consultant?
http://timestream.net/resume

